

Journal of Nonlinear Analysis and Optimization

Vol. 15, Issue. 1 : 2024

ISSN : 1906-9685

VERILOG BASED BRAIN - INSPIRED SYSTEM

Swathi Kambhampati, K.Varsha, A.Chaitanya, B.Madhavi, G.Lakshmi Yoga Vardhini,

Department of Electronics & Communication Engineering, NRI Institute of Technology,

Pothavarappadu (V), Agiripalli (M), Eluru (Dt)-521212

Abstract

Computers, as man-made machines, operate based on predefined sets of inputs and algorithms to

produce outputs, capable of executing intricate tasks. However, they lack the innate imaginative

capacity and comprehensive understanding inherent in the human brain. The human brain, a

remarkable biological machine, learns and comprehends through a complex interplay of cognition,

experience, and sensory input. Achieving computer cognition akin to human thought necessitates

modeling machines on the workings of the human brain. At the core of this endeavor lies the emulation

of neurons, the fundamental units of the brain responsible for cognitive processes and intelligent

behavior. With billions of neurons interconnected through intricate neural networks, the brain

communicates via electrical impulses, facilitating cognition and consciousness. Replicating this neural

architecture within computers enables the emulation of human-like cognitive processes, potentially

unlocking greater understanding, creativity, and problem-solving capabilities in artificial intelligence

systems. However, while significant strides have been made in neural network-based AI models, fully

mirroring the complexity and adaptability of the human brain remains an ongoing challenge in the

pursuit of true artificial intelligence.

Keywords: Neuron, layer, neural column, activation function

1.Introduction

The Blue Brain Project, initiated in May 2005 by the Brain and Mind Institute of the École

Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, endeavors to fabricate a synthetic brain

through the reverse-engineering of mammalian brains. Utilizing the Blue Gene supercomputer and

Michael Hine’s NEURON software, the project aims to explore the structural and functional principles

of the brain, employing biologically realistic neuron models rather than merely analyzing artificial

neural networks. Its ultimate ambition is to digitally reconstruct and simulate the human brain. The

project's innovative research approach capitalizes on interdependencies within experimental data to

generate detailed brain maps across various organizational levels (molecules, cells, micro-circuits,

brain regions, and the entire brain) without requiring exhaustive measurements. Meanwhile, the Fast

Analog Computing with Emergent Transient States (FACETS) project, established in September 2005

and funded by the European Union, involves approximately 80 scientists from Austria, France,

Germany, Hungary, Sweden, Switzerland, and the United Kingdom. This initiative aims to investigate

the computational properties of the human brain. Additionally, it seeks to develop microchip hardware

capable of emulating around 200,000 neurons with 50 million synapses on a single silicon wafer.

Current prototypes exhibit computational speeds approximately 100,000 times faster than their

biological counterparts, positioning them as the swiftest analog computing devices ever devised for

371 JNAO Vol. 15, Issue. 1 : 2024

neuronal computations.Neurogrid, a supercomputer, employs analog computation to mimic ionchannel

activity and utilizes digital communication to establish synaptic connections. With the capacity to

simulate one million neurons, each with two subcellular compartments, Neurogrid's design is informed

by neurophysiological studies. It successfully replicates nonlinear interactions between projections

terminating in distinct cortical layers using a pyramidal-cell model with just two compartments.

Notably, Neurogrid's chief advantage lies in its real-time simulation of a million neurons connected by

billions of synapses, rivaling supercomputers while consuming 100,000 times less energy.

Additionally, its integration of analog and digital systems enhances computational

capabilities.Furthermore, this paper introduces an evolvable hardware system housed within an FPGA,

capable of autonomously generating digital processing circuits on an array of processing elements

(PEs). Employing an embedded evolutionary algorithm, candidate circuits are dynamically

reconfigured and evaluated in the final hardware, leveraging a systolic approach for optimal

performance. The system showcases smaller reconfiguration times compared to software-based

approaches, even when considering hardware evaluation in the target device. Focusing on digital image

filtering and edge detection, the system produces evolved filters that outperform classic linear and

nonlinear filters, exhibiting superior adaptability to various noise types and intensities without

compromising filtering quality, even at high noise levels (40 percent). This advancement represents a

significant step towards fully autonomous, adaptive systems.In summary, this collection of selected

contributions fills a void in FPGA-based neurocomputing, serving as both an introductory guide and a

comprehensive reference. While the book may have minor graphical and typographical issues, along

with occasional instances of poor English and lack of an index, it offers valuable insights into the field,

benefiting researchers, engineers, and students alike. Nonetheless, the Evolvable Hardware research

area, while showing promising progress, still has room for improvement in efficiently tackling more

complex problem instances, as discussed in this paper [1-7].

2. Proposed Method

The model described in this paper uses three types of neurons

Input Neuron

In the initial layer of the column, the neuron acts as a foundational unit designed to replicate specific

characteristics of biological neurons. This neuron possesses the ability to process incoming signals in

pulse form. It receives two pulse inputs, which are then tallied and transmitted after a designated delay.

This delay is essential for mimicking the temporal dynamics inherent in neural processing and is

achieved through a latch mechanism. Furthermore, the neuron integrates two distinct types of

thresholds to regulate its function. The first threshold, referred to as the synaptic gap threshold, is

established using logical AND operations on the input pulses. This threshold mechanism ensures that

the neuron responds only when a certain level of input activity is attained, mirroring the synaptic

strength observed in biological synapses.

The neuron also uses a threshold for the activation function, which is modelled as a comparator. This

threshold establishes if the total input activity exceeds a predetermined threshold value, activating the

neuron. The neuron efficiently analyses incoming information and adds to the overall functionality of

the brain-inspired system by integrating these threshold mechanisms.

372 JNAO Vol. 15, Issue. 1 : 2024

Figure.1. Input Neuron Model

Middle Neuron

In layers 2 to 5 of the column, neurons primarily act as conduits for transferring information from

lower layers to upper layers, facilitating hierarchical processing within the brain-inspired system.

Unlike the neurons in the input layer, these neurons do not engage in counting or utilize latch

mechanisms, as their role is solely focused on information transmission. However, similar to the

neurons in the input layer, they still rely on threshold mechanisms to regulate their activation. These

thresholds are implemented in two forms, resembling the synaptic gap threshold and the activation

function threshold observed in the input layer. The synaptic gap threshold, achieved through logical

AND operations on input signals, ensures that the neuron responds only when a sufficient level of input

activity is detected.

Figure.2. Middle Neuron Model

This mechanism mirrors the selective connectivity observed in biological synapses, where signal

transmission depends on the strength of synaptic connections. Furthermore, these neurons include an

activation function threshold, typically represented by a comparator, to assess whether the accumulated

input activity exceeds a predetermined threshold level, thus initiating the neuron's activation. Through

the integration of these threshold mechanisms, neurons in layers 2 to 5 efficiently facilitate information

flow across hierarchical layers, enhancing the overall functionality and adaptability of the

braininspired system.

Pulsar Neuron:

In layer 6 of the column, neurons operate on a unique principle of negative potential, where the nerve

potential is elevated in the absence of information. This unconventional approach entails that neurons

are primed to fire when there is minimal input activity, contrasting with the typical response pattern

373 JNAO Vol. 15, Issue. 1 : 2024

observed in neural networks. Essentially, the high potential state signifies a readiness to transmit

signals, with activation occurring in response to deviations from this baseline. This distinctive

characteristic enables neurons in layer 6 to efficiently detect and amplify signals representing novel or

unexpected information, thereby contributing to the system's ability to discern salient stimuli and adapt

to changing environmental conditions.

NEURAL COLUMN MODEL

The single-column structure comprises six layers: input neurons at the bottom, middle neurons

spanning layers 2 to 5, and pulsars at the topmost layer. The distinctive aspect of this architecture is

the interconnection between layer 4 neurons, where outputs from one layer 4 neuron act as inputs to

the next layer 4 neuron, facilitating connectivity across various columns.

Figure.3. Pipelined Single Neural Column Model

Pipelining

Pipelining stands as a fundamental technique in computer architecture and digital circuit design, aimed

at boosting system performance by harnessing parallelism. By segmenting the processing of a task into

sequential stages, pipelining enables simultaneous operation of different stages on various parts of the

task. This approach mirrors an assembly line in a factory, where each stage in the pipeline performs a

specific operation on the data it receives before passing it to the next stage. This concurrent execution

of tasks enhances throughput and reduces execution time by allowing multiple operations to progress

simultaneously through the pipeline, rather than waiting for each operation to complete sequentially.

Essentially, a pipeline embodies a structured flow of data through a series of stages, with each stage

dedicated to a specific processing aspect. This division of labor streamlines task execution by

eliminating idle time and maximizing resource utilization. Through seamless operation overlap,

pipelining optimizes system efficiency and responsiveness, empowering modern computing systems

to handle increasingly complex tasks with greater speed and agility. The concept of pipelining finds

extensive use in various computing architectures, including CPUs (Central Processing Units), GPUs

(Graphics Processing Units), and digital signal processors, among others, particularly effective in

scenarios where tasks can be divided into smaller, independent steps executed sequentially.

Various pipelining techniques are employed across computing systems, each tailored to optimize

specific aspects of task execution. Instruction pipelining, prevalent in CPUs, segments the instruction

374 JNAO Vol. 15, Issue. 1 : 2024

execution process into discrete stages such as fetching, decoding, and executing. By distributing these

tasks across different stages, instruction pipelining enables simultaneous processing of multiple

instructions, thereby enhancing throughput and overall system performance. Similarly, data pipelining,

commonly found in digital circuits, divides data processing into stages like arithmetic operations,

memory access, and output generation, facilitating parallel execution of data-related tasks, further

boosting system efficiency and responsiveness.

Despite the manifold benefits of pipelining, its implementation introduces challenges that must be

addressed to ensure correct operation. One such challenge is pipeline hazards, which can disrupt the

orderly flow of instructions or operations through the pipeline. Data hazards occur when subsequent

instructions rely on the results of preceding instructions that have not yet completed, while control

hazards arise from branching instructions that alter the flow of execution. Additionally, structural

hazards may occur due to resource conflicts when multiple pipeline stages compete for the same

hardware resources. Effectively managing these hazards is crucial to mitigating their impact on system

performance and ensuring the accurate execution of instructions or operations in pipelined architecture.

The following block diagram represents the combined as well as the sub-operations performed in each

segment of the pipeline.

Figure.4. Sub-operations performed in each segment of the pipeline.

Registers R1, R2, R3, and R4 serve as temporary data storage, while combinational circuits within a

specific segment process this data without internal state or memory. These circuits conduct operations

solely based on their input values, rendering them suitable for tasks such as arithmetic calculations or

logical operations within the designated segment. The output generated by the combinational circuit

in a given segment is applied as an input register for the next segment. For example, from the block

diagram, we observe that register R3 is utilized as one of the input registers for the combinational adder

circuit. Pipeline processing in the instruction stream involves overlapping the execution of multiple

instructions, enabling enhanced throughput and efficiency by fetching, decoding, and executing

instructions concurrently, akin to how data pipeline processing enhances data throughput sequentially.

Most digital computers with complex instructions necessitate instruction pipelines to carry out

operations like instruction fetch, decode, and execute.

In general, the computer needs to process each instruction with the following sequence of steps.

1. Fetch instruction from memory.

2. Decode the instruction.

3. Calculate the effective address.

4. Fetch the operands from memory.

5. Execute the instruction.

375 JNAO Vol. 15, Issue. 1 : 2024

6. Store the result in the proper place.

The concept of an instruction pipeline plays a pivotal role in maximizing the efficiency of instruction

execution. Each step of instruction processing, including fetching, decoding, executing, and storing

results, is typically segmented within the pipeline. However, variations in task complexity or external

factors like memory access latency may cause these segments to operate at different speeds. When

segments process incoming information at different rates, pipeline inefficiencies may arise. For

instance, if one segment completes its task faster than another, it may encounter idle time while waiting

for the slower segment to finish. Additionally, situations may occur where multiple segments

simultaneously require memory access, leading to contention and potential delays as one segment waits

for another to finish accessing memory before proceeding. To mitigate these issues and optimize

pipeline performance, organizing the pipeline into segments of equal duration is desirable. This ensures

that each segment completes its operation within a consistent timeframe, reducing bottlenecks and idle

periods. One commonly used approach is the Four-segment instruction pipeline, dividing the

instruction cycle into four equal-duration segments: instruction fetch, instruction decode, execute, and

write-back. By dividing the instruction cycle into equally sized segments, the Four-segment pipeline

promotes a balanced distribution of workload across pipeline stages. This organization helps maintain

a steady flow of instructions through the pipeline, minimizing idle time and maximizing throughput.

Moreover, it simplifies coordination of memory access and other resource dependencies among

pipeline segments, further enhancing overall efficiency. Segmenting the instruction cycle into equally

sized segments, as demonstrated by the Four-segment pipeline, is a fundamental strategy for

optimizing pipeline efficiency in computer architectures. This approach fosters balanced workload

distribution, reduces contention for shared resources, and ultimately enhances instruction processing

performance within the pipeline.

Figure.5. Loop iterations using pipeline registers

In a four-segment instruction pipeline, the goal is to streamline instruction processing stages to enhance

efficiency and throughput by consolidating two or more distinct segments into a single one. This

consolidation reduces the overall number of pipeline stages and potentially minimizes the overhead

associated with instruction processing.

For example, in traditional instruction pipelines, the decoding of an instruction and the calculation of

its effective address are typically separate stages. The decoding stage interprets the opcode and

determines the operation to be performed, while the effective address calculation stage computes the

memory address or operand location based on addressing modes specified in the instruction.

By merging these two stages into a single segment, the pipeline can potentially decrease the number

of clock cycles required for instruction execution. This consolidation enables the processor to initiate

the effective address calculation as soon as the instruction opcode is decoded, rather than waiting for

a separate stage to perform the calculation. Consequently, the overall latency of instruction execution

may be reduced, resulting in improved performance.

However, consolidating segments also presents trade-offs. Combining decoding and effective address

calculation may increase the complexity of the combined segment, potentially making it more

376 JNAO Vol. 15, Issue. 1 : 2024

challenging to design and optimize. Moreover, if the tasks within the combined segment have

significantly different processing requirements or resource dependencies, achieving optimal

performance without introducing bottlenecks may be challenging.

Overall, while consolidating segments in a four-segment instruction pipeline can streamline instruction

processing and potentially enhance efficiency, careful consideration of the trade-offs involved is

necessary to ensure that performance gains are achieved without introducing undue complexity or

compromising resource utilization.

3. Results and Discussion RTL

schematic

The single neuron column model, an artificial human brain model, employs a blend of full adders,

counters, latches, and comparators to facilitate information transmission between neurons. This model

has been meticulously designed, implemented, and subjected to simulation and synthesis using the

Xilinx ISE tool.

Figure.6. RTL Schematic of single neuron column model

Figure 6 depicts the RTL Schematic of a single neuron column model. This figure describes the

schematic of a single neuron column model in the proposed system. It illustrates how information is

passed from input neurons to the final output neuron, i.e., the pulsar layer.

Simulation results:

Taking some values for the simulation as below, Unsigned decimal inputs:

int1=18, int2=116, w1=133, w2=99, T=0,255 Unsigned decimal outputs:

For T=0:

final out=0, middle neuron1=0, middle neuron2=0, middle neuron3=0, middle neuron4=0.

For T=255: final out=136, middle neuron1=136, middle neuron2=128, middle neuron3=132, middle

neuron4=136.

377 JNAO Vol. 15, Issue. 1 : 2024

Figure.7. Simulation result of single neuron column model

The behavioural simulation of the single neuron column model is shown in figure 7 above. We can see

that the single neuron column model's enable pins in this simulation are clk, rst, and en. The value of

T, which acts as the threshold, determines the outputs. The output changes depending on this threshold.

Depending on the threshold value, information is transferred from the input neuron to the final output

neuron.

Technology schematic:

Figure 8 illustrates the technological schematic of the single neuron column model, showcasing a

sophisticated framework crafted to mimic the functionality of the human brain. This depiction

integrates components such as full adders, counters, latches, and comparators to enable seamless

information transmission between neurons, closely resembling biological neural networks.

Figure.8. Technological schematic of single neuron column model Area:

378 JNAO Vol. 15, Issue. 1 : 2024

Figure.9. Synthesis table for single neuron column model

The synthesis table presented in Figure 9 provides an overview of the area required to construct the

single neuron column model. This figure offers insights into the number of Look Up Tables (LUTs)

and registers necessary for the model.

Delay:

Figure 10 showcases the synthesis report presenting the delay, indicating that the time delay of the

single neuron column model in simulation is 15.988ns.

Figure.10. Synthesis report displaying delay

Power:

Figure.11. Power estimation of single neuron column model

The single neuron column model's power estimation is shown in figure 11, above. This figure helps to

comprehend the model's overall efficiency and possible energy-saving optimisations by showing the

electrical requirements for operating the model. For the single neuron column model, the total on-chip

power is 2.812 W. Comparison table

Table 1: Comparison table

 Area(LUT’S) Delay(ns) Power (watts)

Proposed method 127 15.988 2.812

Existing method 101 17.347 3.762

379 JNAO Vol. 15, Issue. 1 : 2024

A comparison of the current approach and the suggested approach—the single neuron column model—

is shown in table 1 above. This table shows that when comparing the suggested way to the current

method, the area increased by 26 LUTs. On the other hand, the suggested approach demonstrated a

0.95 W reduction in power usage and a 1.359 ns delay reduction.

3.1 ADVANTAGES AND APPLICATIONS

3.1.1 Advantages

• Parallel Processing: Different phases of brain activities can be carried out in parallel thanks to

pipelines. Replicating the brain's parallel processing architecture can improve compute speed and

efficiency.

• Performance Enhancement: Compared to conventional sequential approaches, the pipelined model

may be able to mimic brain processes more quickly. This might make it easier to analyse and interpret

computations that resemble the brain more quickly.

• Resource Utilisation: By enabling several components of the brain model to function concurrently,

pipelines maximise the use of hardware resources. This economical use of resources could result in

the implementation of hardware that is more effective.

• Scalability: Pipelining frequently makes scaling simpler. Research and application development may

be made more flexible if a model of this kind could be appropriately scaled down for certain uses or

scaled up to represent more complicated brain activities.

3.1.2 Applications

• Neuromorphic Computing: The development of neuromorphic computing systems may benefit from

the use of a pipelined electronic brain model. Real-time cognitive processing, pattern recognition,

and effective learning are made possible by these systems, which imitate the structure and operations

of the brain.

• Brain-Computer Interfaces (BCIs): A model like this could help create more sophisticated BCIs that

enable real-time communication between the brain and electronics. This has the potential to

revolutionise direct brain-to-machine communication and assistive technology for people with

disabilities.

• Medical Applications: Research and treatment in the field of medicine may benefit from real-time

simulations. For example, predicting brain reactions to stimuli or designing treatments for

neurological illnesses could be aided by modelling neural responses in certain brain regions.

• Cognitive Robotics: By using pipelined brain models, robotics researchers may be able to build more

intelligent and adaptable robots. These machines could mimic human thought processes by

processing sensory data, learning from mistakes, and making judgements instantly.

• Machine learning and artificial intelligence: Using models resembling brains could improve

algorithms for machine learning and AI. AI systems' capacity for pattern recognition, decision-making,

and adaptive learning may be improved by real-time simulations.

• Cutting-Edge Research Instruments: These models may be used as cutting-edge neuroscience

research instruments. Studying neural networks, comprehending brain processes, and investigating

emergent characteristics of intricate brain functions may all be facilitated by real-time simulations.

3.1.3 Dis-Advantages

• Limited Complexity: Humans' capacity to perform complicated tasks efficiently is hampered by this

model's inability to capture the entire complexity of human cognition.

• Scalability Challenge: It is challenging to scale up this model for larger datasets or more complex

jobs, which could result in computing bottlenecks.

• Dependency on Training Data: The amount and quality of training data have a significant impact on

performance, which may introduce biases and restrict generalisation. ss

4. Conclusion

Generally speaking, research has demonstrated that basic pipelining-based artificial brain models can

replicate human cognitive functions by utilising sequential stages and parallel processing. Similar to

human cognition, these models demonstrate potential in tasks like pattern recognition and picture

processing. They efficiently analyse information by mimicking the neuronal architecture of the brain,

380 JNAO Vol. 15, Issue. 1 : 2024

which provides inspiration for the development of increasingly sophisticated and flexible AI systems.

This breakthrough paves the way for artificial systems to accomplish a wide range of activities and get

close to the complexity of the human brain. The use of pipelining techniques to create artificial brain

models has enormous potential. Further development of their design and algorithms could greatly

improve performance and adaptability, and their incorporation into practical uses like robotics and

healthcare could completely transform a number of industries. New avenues may be opened by

interdisciplinary approaches that combine cognitive psychology, computer science, and neuroscience.

Building trust will need addressing social and ethical issues like privacy and openness. In the end,

these models have enormous potential to spur innovation in a variety of fields and produce intelligent

systems that can solve difficult problems and improve human experiences.

Reference

1. H. Markram, “The blue brain project” Nature Reviews Neuroscience, 7(2), (pp.153- 160),

2006.

2. J.R. Cary, J. Candy, J. Cobb, R.H. Cohen, T. Epperly, D.J. Estep, S. Krasheninnikov,

A.D. Malony, D.C. McCune, L. McInnes and A. Pankin, “Concurrent, parallel, multiphysics coupling

in the FACETS project”. InJournal of Physics: Conference Series IOP Publishing (Vol. 180, No. 1, p.

012056), 2009. 3. T. Theocharides, G. Link, N. Vijaykrishnan, M. Irwin and V. Srikantam, “A generic

reconfigurable neural network architecture implemented as a network on chip” In Proceedings of

IEEE International SOC Conference (pp. 191-194) Sept., 2004.

4. D.B. Carr and S.R. Sesack, “ A Bag containing neurons in the rat ventral tegmental area project

to the prefrontal cortex”. Synapse,38(2)(pp.114-123), 2000

5. R. Salvador, A. Otero, J. Mora, E. de la Torre, T. Riesgo and L. Sekanina, “Self- reconfigurable

evolvable hardware system for adaptive image processing”. Computers, IEEE Transactions on, 62(8),

(pp.1481-1493), 2013.

6. C. Teuscher, "FPGA Implementations of Neural Networks” (Ormondi. A.R. and Rajapakse,

J.C., Eds.; 2016)," in IEEE Transactions on Neural Networks, vol. 18, no. 5, pp. 1550-1550, Sept.

2017, doi: 10.1109/TNN.2007.906886.

7. F. Cancare, S. Bhandari, D.B. Bartolini, M. Carminati and M.D. Santambrogio, “A bird's eye

view of FPGA-based Evolvable Hardware” Adaptive Hardware and Systems (AHS), 2011 NASA/ESA

Conference on (pp. 169-175) June 2011.

